The CDG2000 High Performance Transceiver (Part 6)

The Controller

The controller is designed to manage all aspects of the transceiver. It provides two VFOs, manages the user interface and controls all functions of the rig. It handles transmit / receive switching and provides an automatic keyer. It can be seen in Picture 1. 

As you may remember from the first part of this series, the three transceivers built so far have differed widely in their interfaces. Dave wanted a minimalist design with ‘soft’ buttons and a single rotary control. This was anathema to George who wanted separate controls for each major function. Colin’s design fell somewhere in between.

In consequence of these widely differing requirements, the controller needed to be highly configurable. It can support the following User Interface options:

· Up to 32 push buttons in 2 scanned banks that can be soft programmed

· 1 or 2 rotary controls ( shaft encoders )

· 20x2 or 40x4 alphanumeric displays or

· 320x240 graphics displays

In addition it possesses:

· An I2C bus to control the transceiver

· Dual DDS control interface

· A PTT input

· A keyer input

· Analogue inputs for S meter and Power meter functions

· Switched 12 V  outputs for tx/rx and mode control

· An in circuit programming interface

· An RS232 interface

All push buttons are ‘soft’ controlled. When first switched on, pressing any button causes nothing to happen. Holding it down for more than 5 seconds however allows the button to be programmed to one of a large number of functions by means of the main tuning control. Releasing the button stores that button’s function in non volatile memory. It will retain that function when switched off. When the graphics display version is used, the function associated with a button is displayed in an on screen menu close to the button, and the functions may change with selectable menus. Picture 2 shows this.

Almost all operational parameters are configurable – the DDS frequency, the band details, the VCO and relay control data etc. Those that cannot be configured can be altered by rebuilding the software.

The software is written in PIC assembler, and the full source code is available for Amateur use from the Internet [1] together with a User Guide and pre-built executables for our configurations. The PIC may be programmed in circuit in the controller by means of a small interface board plugged into the parallel port of a PC if a dedicated PIC programmer is not available.

The Circuit

The circuit diagram of the controller is shown in Figure 3, Figure 4 and Figure 5. The heart of the controller is a PIC micro – the PIC17C766. This is a “high end” processor in an 84 pin chip carrier with a rich set of interface devices [2]. 

A number of interfaces to the controller are provided – these are summarised in Table 1.

JP1 provides two analogue inputs and also carries the keyer lines. The analogue inputs are used for the on screen S meter and TX Power meters. Each requires an analogue voltage in the range 0 to 4 Volts and the software allows it to be converted into an accurate S meter which will also display a textual reading in “S” points and dBm. An example of this is shown in Picture 3. If the on screen S meter is not used, the controller can instead provide a DC voltage that is controllable by software and reflects the attenuator and band settings so that an analogue S meter can be corrected automatically to read true regardless of receiver configuration.

JP2 allows the controller to manage the Direct Digital Synthesizer that provides frequency control.  In fact, support for 2 DDS chips is provided, but only one is used at present. There is a common serial data/clock interface and two separate load signals. 

JP3 is the I2C bus that controls the transceiver. An overview of I2C will be given later but in summary it is a 2 wire bus that allows the controller to read and write a number of devices that are all connected in parallel on the 2 wire bus. The detailed circuit diagram shows it on a 10 way connector, with multiple ground and power lines. The keyer lines are also connected to the bus for convenience. The I2C bus also controls an EEPROM that is located on the controller board that provides non volatile storage for the rig.

JP4, 9 and 13 are concerned with power. JP9 provides power to the controller itself – a voltage sufficient for the 5V regulator plus a negative voltage for the LCD if required. JP13 provides a high current +12V feed to a set of FET switches. These are controlled by the processor and provide switched voltages on JP4, allowing the processor to switch on and off 12V supplies on transmit and receive as well as controlling other functions as required. The two main outputs for TX and RX power have active pull downs to reduce leakage into the circuits when off.

The display is connected to JP5. A wide range of displays can be used provided that they employ an 8 bit parallel bus interface. In George’s transceiver this is a 4 line 40 character alphanumeric display based on the industry standard HD44780 controller. In Dave’s it is a 320 x 240 pixel ¼ VGA graphics panel with a CCFL backlight. Colin’s uses the Hitachi HD61830.

JP6 connects to one or two shaft encoders. These are used to provide main tuning and other functions and are quadrature signal devices with two signals from each that allows the controller to read the speed, direction and amount of rotation of each.

Keyboard scanning is provided on JP7 and JP8. The software assumes a 4x4 matrix on each port as  shown in Figure 1 providing 32 switches. Not all have to be used. Every (configurable) one or two milliseconds a scan line is pulled low and the state of the switches for the previous scan line low is stored. This means that within each 10 msec period all 32 switches are scanned. The scan speed is low, so if the lines connecting keyboard to controller are long they can be heavily filtered. Note that series resistors and pull ups are provided to facilitate this.

Apart from the LCD display updating ( and the LCD itself ! ) the controller is very quiet electrically. It has a 32 MHz clock which is provided by a crystal connected directly to the PIC and no external bus on which digital signals are changing unless an update to a peripheral is requested.

I2C Bus Overview

A full description of I2C bus is beyond the space available here. Detailed information is to be found from Philips who invented it [3] and a good description is presented in the PIC17C766 datasheet [2]. In summary, it is a two wire bus where a master provides a clock for a number of slave devices and the master and slaves communicate by means of a single data line. It is possible to have multiple bus masters in I2C but that option is not used here – the controller is the master. The bus operates at 100 kHz. Faster modes are possible but not necessary. The slow speed also means that the I2C bus cable can be up to 6 feet long but keep it as short as practicable. Each device on the bus has its own address, and Table 2 shows the addresses in use at the moment for CDG2000. When the controller wishes to address a device, it sends a START signal by pulling low the data line whilst clock is high. When it has finished, it signals a STOP by raising data whilst clock is high. This is shown in Figure 3. Having sent a START, it sends the slave address of the device it wishes to communicate with, with the last bit denoting a read or a write. The slave then acknowledges the request by sending back an ACK ( pulls data low whilst clock goes high then low). What happens next depends on the type of peripheral. For the simple PCF8574 [4] latches, data is then sent or received next. For more complex devices such as the EEPROM a sub address is sent first.

By the way, I2C bus is the same method used by the SDRAMs you probably have in your PC to communicate with the chipset – ever wondered how the motherboard magically knows the size and type of memory you install without you needing to configure it ?

As has been stated earlier, the I2C process in the controller software is an interrupt driven state machine. The controller can ‘stack up’ a number of requests that the I2C handler will process one by one. Some of these events are time critical some are not. When the controller switches bands, for example, it waits until it knows it has read the data for the new band from the EEPROM. When it is, for example, updating the current frequency of the VFO it instructs the controller to have up to 5 goes and not to bother telling it if it succeeded or not. The reason for multiple tries is that certain devices such as EEPROMS can temporarily disconnect themselves from the bus if they are busy writing to non volatile storage.

The CDG2000 boards are designed so that a 10 way ribbon cable with connectors crimped to it at intervals can be used to “daisy chain” all the peripherals together. Just be careful of the orientation of the sockets!

Construction

Like other CDG2000 boards, the controller is a single Eurocard 160 x 100 mm. It is a single sided board with a ground plane. Given the density of wiring for the PIC however, a number of wire links are required. Picture 1 shows the controller PCB, and  PCB artwork, layout, component lists and other constructional details are available on the internet [1]. The authors can also supply it on CD if required.

Construction is straightforward – the main things to be careful of are the pins that connect directly to the ground plane and the orientation of the connectors.  

Full programming details are also not presented here. A program is available to allow this to be performed. Ready programmed PICs may be made available – check with the authors for details. Programming is effected using a small interface connected to the controller.

Configuration Data

As a minimum of data is hard coded, most data items can be changed from the screen. Specifically, the actual DDS frequency, band limits, step rate, IF offset, per band relay settings, S meter calibration data and VCO control words may be altered.

Full details are not presented here but are in the user guide[1]. In order to facilitate setting the data, a spreadsheet is available to calculate all the nasty hex values that must be entered for a specific clock frequency and band configuration.

Software Internals

Internally the CPU operates on 1msec, 10msec and 1 second cycles. Every second millisecond, the push button scan is advanced and the PTT line is debounced. Both are debounced digitally to avoid transient effects and the results are made available for the 10 msec process. Every 10 msec, the core events are processed in sequence; all push button events are handled, the transmit / receive and keyer finite state machines are executed, the display is updated and any required peripheral events are initiated. Every second, EEPROM data writes occur if required and miscellaneous events such as controlling the LCD backlight are processed.

Interrupts are used for the following:

· PTT line changes

· Opto shaft encoder events

· I2C event interrupts

· 1 millisecond core clock events

I2C activity is controlled by a background interrupt driven finite state machine. When the main processes want to request I2C activity, they locate a free buffer, define the required activity by setting the buffer and then pass it to the event handler.

Concern has been raised over the responsiveness of PIC processors when used for tuning control and display frequency update [6] and the use of dual PICs has been suggested. This is avoided here by virtue of the interrupt handling of opto events and the 10msec main event loop. If an alphanumeric display is used, frequency updates on the screen take under 7 msec. When a graphics display is used it takes between 18 and 21 msec, well over the 10 msec loop. This has no effect however on performance as interrupt collected tuning events are accumulated and handled within the main loop (in this case every 20 msec when the frequency is changed, 10 msec otherwise) so that it remains responsive without losing pulses. No detrimental effect will be noticed in use.

All band data and related parameters are stored in the EEPROM. On first use however there is no need to pre-configure the EEPROM. Critical data is checksummed and if the data read does not pass checking, it is rejected and data from the EPROM memory of the PIC is used instead. If a change is made to the data, the updated values are written back to EEPROM to be read next time it is needed. It is also possible to ask the controller to reinitialise the data from EPROM.
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Picture 1 - controller PCB
Picture 2 - display detail 

Picture 3 - S Meter closeup

Connector
 Usage

P1
Future RS232 interface

JP1
 IF log amp ( s meter ) & power meter inputs and keyer input

JP2
 DDS bus – drives 1 or 2 DDS devices

JP3
 I2C bus. 

JP4
 switched 12V outputs

JP5
 LCD connector

JP6
 Opto switches

JP7
 switch matrix input 2

JP8
 switch matrix input 1

JP9
 power to the controller ( +12V and whatever negative voltage the LCD & RS232 need )

JP10
 in circuit serial programming interface.

JP11
 write protect configuration data in EEPROM. 

JP12
 unused and not fitted – future interrupt input from I2C

JP13
 incoming 12V to the FET switches

JP14
 push to talk. Ground for transmit

Table 1 - interfaces to the controller
Address range
Device
Usage

A0-AF 
ST24C16
EEPROM

54-55
MAX521 
 8 analogue outputs

5A-5B
DS1807 
 ChA=mic gain  ChB=af gain

5C-5D
DS1807 
 ChA=vox gain  ChB=antivox

4E-4F
PCF8574 
 Band switch for LPF

4A-4B
PCF8574 
 VCO control

48-49
PCF8574 
Secondary band switch for LPF

46-47
PCF8574 
DSP Control 

44-45
PCF8574 
 first band switch on front end board

42-43
PCF8574 
 second band switch on front end

Table 2 - I2C device address map
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Figure 1 - Switch scan circuit
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Figure 2 - I2C Start & Stop
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Figure 3 - Controller circuit diagram - part 1 of 3
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Figure 4 - Controller circuit diagram - part 2 of 3
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Figure 5 - Controller Circuit diagram - part 3 of 3
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