The CDG2000 High Performance Transceiver (Part 6)

The Controller

The controller is designed to manage all aspects of the transceiver. It provides two VFOs, manages the user interface and controls all functions of the rig. It handles transmit / receive switching and provides an automatic keyer. It can be seen in Picture 1.

As you may remember from the first part of this series, the three transceivers built so far have differed widely in their interfaces. Dave wanted a minimalist design with ‘soft’ buttons and a single rotary control. This was anathema to George who wanted separate controls for each major function. Colin’s design fell somewhere in between.

In consequence of these widely differing requirements, the controller needed to be highly configurable. It can support the following User Interface options:

· Up to 32 push buttons in 2 scanned banks that can be soft programmed

· 1 or 2 rotary controls (shaft encoders)

· 20x2 or 40x4 alphanumeric displays or

· 320x240 graphics displays

In addition it possesses:

· An I2C bus to control the transceiver

· Dual DDS control interface

· A PTT input

· A keyer input

· Analogue inputs for S meter and Power meter functions

· Switched 12 V outputs for tx/rx and mode control

· An in circuit programming interface

· An RS232 interface

All push buttons are ‘soft’ controlled. When first switched on, pressing any button causes nothing to happen. Holding it down for more than 5 seconds however allows the button to be programmed to one of a large number of functions by means of the main tuning control. Releasing the button stores that button’s function in non volatile memory. It will retain that function when switched off. When the graphics display version is used, the function associated with a button is displayed in an on screen menu close to the button, and the functions may change with selectable menus. Picture 2 shows this.

Almost all operational parameters are configurable – the DDS frequency, the band details, the VCO and relay control data etc. Those that cannot be configured can be altered by rebuilding the software.

The software is written in PIC assembler, and the full source code is available for Amateur use from the Internet [1] together with a User Guide and pre-built executables for our configurations. The PIC may be programmed in circuit in the controller by means of a small interface board plugged into the parallel port of a PC if a dedicated PIC programmer is not available.

The Circuit

The circuit diagram of the controller is shown in Figure 3, Figure 4 and Figure 5. The heart of the controller is a PIC micro – the PIC17C766. This is a “high end” processor in an 84 pin chip carrier with a rich set of interface devices [2].

A number of interfaces to the controller are provided – these are summarised in Table 1.

JP1 provides two analogue inputs and also carries the keyer lines. The analogue inputs are used for the on screen S meter and TX Power meters. Each requires an analogue voltage in the range 0 to 4 Volts and the software allows it to be converted into an accurate S meter which will also display a textual reading in “S” points and dBm. An example of this is shown in Picture 3. If the on screen S meter is not used, the controller can instead provide a DC voltage that is controllable by software and reflects the attenuator and band settings so that an analogue S meter can be corrected automatically to read true regardless of receiver configuration.

JP2 allows the controller to manage the Direct Digital Synthesizer that provides frequency control. In fact, support for 2 DDS chips is provided, but only one is used at present. There is a common serial data/clock interface and two separate load signals.

JP3 is the I2C bus that controls the transceiver. An overview of I2C will be given later but in summary it is a 2 wire bus that allows the controller to read and write a number of devices that are all connected in parallel on the 2 wire bus. The detailed circuit diagram shows it on a 10 way connector, with multiple ground and power lines. The keyer lines are also connected to the bus for convenience. The I2C bus also controls an EEPROM that is located on the controller board that provides non volatile storage for the rig.

JP4, 9 and 13 are concerned with power. JP9 provides power to the controller itself – a voltage sufficient for the 5V regulator plus a negative voltage for the LCD if required. JP13 provides a high current +12V feed to a set of FET switches. These are controlled by the processor and provide switched voltages on JP4, allowing the processor to switch on and off 12V supplies on transmit and receive as well as controlling other functions as required. The two main outputs for TX and RX power have active pull downs to reduce leakage into the circuits when off.

The display is connected to JP5. A wide range of displays can be used provided that they employ an 8 bit parallel bus interface. In George’s transceiver this is a 4 line 40 character alphanumeric display based on the industry standard HD44780 controller. In Dave’s it is a 320 x 240 pixel ¼ VGA graphics panel with a CCFL backlight. Colin’s uses the Hitachi HD61830.

JP6 connects to one or two shaft encoders. These are used to provide main tuning and other functions and are quadrature signal devices with two signals from each that allows the controller to read the speed, direction and amount of rotation of each.

Keyboard scanning is provided on JP7 and JP8. The software assumes a 4x4 matrix on each port as shown in Figure 1 providing 32 switches. Not all have to be used. Every (configurable) one or two milliseconds a scan line is pulled low and the state of the switches for the previous scan line low is stored. This means that within each 10 msec period all 32 switches are scanned. The scan speed is low, so if the lines connecting keyboard to controller are long they can be heavily filtered. Note that series resistors and pull ups are provided to facilitate this.

Apart from the LCD display updating (and the LCD itself !) the controller is very quiet electrically. It has a 32 MHz clock which is provided by a crystal connected directly to the PIC and no external bus on which digital signals are changing unless an update to a peripheral is requested.

I2C Bus Overview

A full description of I2C bus is beyond the space available here. Detailed information is to be found from Philips who invented it [3] and a good description is presented in the PIC17C766 datasheet [2]. In summary, it is a two wire bus where a master provides a clock for a number of slave devices and the master and slaves communicate by means of a single data line. It is possible to have multiple bus masters in I2C but that option is not used here – the controller is the master. The bus operates at 100 kHz. Faster modes are possible but not necessary. The slow speed also means that the I2C bus cable can be up to 6 feet long but keep it as short as practicable. Each device on the bus has its own address, and Table 2 shows the addresses in use at the moment for CDG2000. When the controller wishes to address a device, it sends a START signal by pulling low the data line whilst clock is high. When it has finished, it signals a STOP by raising data whilst clock is high. This is shown in Figure 3. Having sent a START, it sends the slave address of the device it wishes to communicate with, with the last bit denoting a read or a write. The slave then acknowledges the request by sending back an ACK (pulls data low whilst clock goes high then low). What happens next depends on the type of peripheral. For the simple PCF8574 [4] latches, data is then sent or received next. For more complex devices such as the EEPROM a sub address is sent first.

By the way, I2C bus is the same method used by the SDRAMs you probably have in your PC to communicate with the chipset – ever wondered how the motherboard magically knows the size and type of memory you install without you needing to configure it ?

As has been stated earlier, the I2C process in the controller software is an interrupt driven state machine. The controller can ‘stack up’ a number of requests that the I2C handler will process one by one. Some of these events are time critical some are not. When the controller switches bands, for example, it waits until it knows it has read the data for the new band from the EEPROM. When it is, for example, updating the current frequency of the VFO it instructs the controller to have up to 5 goes and not to bother telling it if it succeeded or not. The reason for multiple tries is that certain devices such as EEPROMS can temporarily disconnect themselves from the bus if they are busy writing to non volatile storage.

The CDG2000 boards are designed so that a 10 way ribbon cable with connectors crimped to it at intervals can be used to “daisy chain” all the peripherals together. Just be careful of the orientation of the sockets!

Construction

Like other CDG2000 boards, the controller is a single Eurocard 160 x 100 mm. It is a single sided board with a ground plane. Given the density of wiring for the PIC however, a number of wire links are required. Picture 1 shows the controller PCB, and PCB artwork, layout, component lists and other constructional details are available on the internet [1]. The authors can also supply it on CD if required.

Construction is straightforward – the main things to be careful of are the pins that connect directly to the ground plane and the orientation of the connectors.

Full programming details are also not presented here. A program is available to allow this to be performed. Ready programmed PICs may be made available – check with the authors for details. Programming is effected using a small interface connected to the controller.

Configuration Data

As a minimum of data is hard coded, most data items can be changed from the screen. Specifically, the actual DDS frequency, band limits, step rate, IF offset, per band relay settings, S meter calibration data and VCO control words may be altered.

Full details are not presented here but are in the user guide[1]. In order to facilitate setting the data, a spreadsheet is available to calculate all the nasty hex values that must be entered for a specific clock frequency and band configuration.

Software Internals

Internally the CPU operates on 1msec, 10msec and 1 second cycles. Every second millisecond, the push button scan is advanced and the PTT line is debounced. Both are debounced digitally to avoid transient effects and the results are made available for the 10 msec process. Every 10 msec, the core events are processed in sequence; all push button events are handled, the transmit / receive and keyer finite state machines are executed, the display is updated and any required peripheral events are initiated. Every second, EEPROM data writes occur if required and miscellaneous events such as controlling the LCD backlight are processed.

Interrupts are used for the following:

· PTT line changes

· Opto shaft encoder events

· I2C event interrupts

· 1 millisecond core clock events

I2C activity is controlled by a background interrupt driven finite state machine. When the main processes want to request I2C activity, they locate a free buffer, define the required activity by setting the buffer and then pass it to the event handler.

Concern has been raised over the responsiveness of PIC processors when used for tuning control and display frequency update [6] and the use of dual PICs has been suggested. This is avoided here by virtue of the interrupt handling of opto events and the 10msec main event loop. If an alphanumeric display is used, frequency updates on the screen take under 7 msec. When a graphics display is used it takes between 18 and 21 msec, well over the 10 msec loop. This has no effect however on performance as interrupt collected tuning events are accumulated and handled within the main loop (in this case every 20 msec when the frequency is changed, 10 msec otherwise) so that it remains responsive without losing pulses. No detrimental effect will be noticed in use.

All band data and related parameters are stored in the EEPROM. On first use however there is no need to pre-configure the EEPROM. Critical data is checksummed and if the data read does not pass checking, it is rejected and data from the EPROM memory of the PIC is used instead. If a change is made to the data, the updated values are written back to EEPROM to be read next time it is needed. It is also possible to ask the controller to reinitialise the data from EPROM.

References

[1] http://www.warc.org.uk
[2] Microchip PIC17C766 datasheet, reference DS30289A from http://www.microchip.com
[3] Philips I2C bus information from http://www.semiconductors.philips.com/i2c
[4] PCF8574 datasheet from http://www.semiconductors.philips.com
[5] Microchip in circuit programing specification for the PIC17C7xx, DS30274B from http://www.microchip.com
[6] Use of PICs in DDS designs, Technical Topics, RadCom January 2001, p61

Picture 1 - controller PCB
Picture 2 - display detail

Picture 3 - S Meter closeup

Connector
 Usage

P1
Future RS232 interface

JP1
 IF log amp (s meter) & power meter inputs and keyer input

JP2
 DDS bus – drives 1 or 2 DDS devices

JP3
 I2C bus.

JP4
 switched 12V outputs

JP5
 LCD connector

JP6
 Opto switches

JP7
 switch matrix input 2

JP8
 switch matrix input 1

JP9
 power to the controller (+12V and whatever negative voltage the LCD & RS232 need)

JP10
 in circuit serial programming interface.

JP11
 write protect configuration data in EEPROM.

JP12
 unused and not fitted – future interrupt input from I2C

JP13
 incoming 12V to the FET switches

JP14
 push to talk. Ground for transmit

Table 1 - interfaces to the controller
Address range
Device
Usage

A0-AF
ST24C16
EEPROM

54-55
MAX521
 8 analogue outputs

5A-5B
DS1807
 ChA=mic gain ChB=af gain

5C-5D
DS1807
 ChA=vox gain ChB=antivox

4E-4F
PCF8574
 Band switch for LPF

4A-4B
PCF8574
 VCO control

48-49
PCF8574
Secondary band switch for LPF

46-47
PCF8574
DSP Control

44-45
PCF8574
 first band switch on front end board

42-43
PCF8574
 second band switch on front end

Table 2 - I2C device address map
[image: image1.wmf]D0

D1

D2

D3

D4

D5

D6

D7

Figure 1 - Switch scan circuit

[image: image2.wmf]S

P

Data

(SDA)

Clock

(SCL)

Start Condition

Stop Condition

Data

Transfer

Figure 2 - I2C Start & Stop

[image: image3.wmf]Date:

September 16, 2001

Sheet

 1

of

 4

Size

Document Number

REV

B

.\NEWCTRL1

4

Title

CDG2000 Controller V2

GND

1

2

3

4

5

6

7

8

9

10

JP3

HEADER 5X2

I2C BUS

PGM-DCLK

R18

100k

VCC

R17

100k

1

2

3

4

5

6

7

8

JP1

HEADER 8

RELAYS[0..7]

KEY_0

KEY_1

RF0

RF1

RF2

RF3

RF4

RF5

RF[0..7]

RA0

72

RA1

56

RA2

57

RA3

58

RA4

51

RA5

50

RB0

71

RB1

70

RB2

66

RB3

69

RB4

68

RB5

67

RB6

59

RB7

60

RC0

 3

RC1

83

RC2

82

RC3

81

RC4

80

RC5

79

RC6

78

RC7

77

RD0

15

RD1

14

RD2

 9

RD3

 8

RD4

 7

RD5

 6

RD6

 5

RD7

 4

RE0

16

RE1

17

RE2

18

RE3

19

RF0

 36

RF1

 35

RF2

 30

RF3

 29

RF4

 28

RF5

 27

RF6

 26

RF7

 25

RG0

 42

RG1

 41

RG2

 40

RG3

 39

RG4

 46

RG5

 47

RG6

 49

RG7

 48

RH0

 10

RH1

 11

RH2

 12

RH3

 13

RH4

 31

RH5

 32

RH6

 33

RH7

 34

RJ0

 52

RJ1

 53

RJ2

 54

RJ3

 55

RJ4

 73

RJ5

 74

RJ6

 75

RJ7

 76

MCLR

 20

TEST

 21

A

V

S

S

3

8

V

S

S

2

3

V

S

S

4

4

V

S

S

6

5

V

S

S

8

4

A

V

D

D

3

7

V

D

D

2

V

D

D

2

4

V

D

D

4

5

V

D

D

6

1

OSC1

 62

OSC2

 63

U1

PIC17C76X

VCC

PTT

PGM-IO

PGM-CLK

R1

4k7

R2

4k7

GND

GND

VCC

VCC

I2C-SCL

I2C-SDA

VCC

KEY_0

KEY_1

SCL

 6

SDA

 5

MODE

 7

PRE

 1

PB0

 2

PB1

 3

U2

24C16

R5

47k

VCC

GND

LCD-RS

LCD-RW

1

2

JP12

HEADER 2

I2C INT

1

2

JP11

HEADER 2

WR PROT

PORT-B[0..7]

RB0

RB1

RB2

RB3

RB4

RB5

RB6

RB7

RB[0..7]

RF6

RF7

GND

RS232-TXD

RS232-RXD

RS232-RTS

RS232-CTS

PORT-H[0..7]

RH[0..7]

RH0

RH1

RH2

RH3

RH4

RH5

RH6

RH7

RJ0

RJ1

RJ2

RD0

RD1

RD2

RD3

RD4

OPTO1_B

OPTO2_B

LCD-E

LCD-CS

LCD-RES

PORT-D[0..7]

RD[0..7]

RD5

RD6

RD7

C1

10pF

RJ3

RJ4

RJ5

RJ6

RJ7

PGM-VPP

PGM-TEST

PORT-J[0..7]

RJ[0..7]

R10

10K

GND

R11

10K

C2

10pF

Y1

33MHz

C3

0u1

L1

2u2

GND

DDS CLK

DDS DATA

DDS1 E

DDS2 E

1

2

3

4

5

6

7

8

9

10

JP2

HEADER 5X2

DDS BUS

GND

GND

Figure 3 - Controller circuit diagram - part 1 of 3

[image: image4.wmf]Date:

September 16, 2001

Sheet

 2

of

 4

Size

Document Number

REV

B

.\NEWCTRL2

4

Title

CDG2000 CONTROLLER V2

GND

5

 4

 6

U5B

1489

 2

 3

U4A

1488

RS232-RTS

LCD-RS

VCC

GND

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

JP5

HEADER 10X2

LCD

VCC

R12

22K VAR

VEE

LCD-RW

RD0

RD2

RD4

RD6

LCD-CS

RD1

RD3

RD5

RD7

LCD-E

LCD-RES

RS232-CTS

RS232-RXD

1

2

13

 11

U5D

1489

 5

 9

 4

 8

 3

 7

 2

 6

 1

P1

CONNECTOR DB9

 12

 13

11

U4D

1488

 9

 10

 8

U4C

1488

9

10

 8

U5C

1489

RS232-TXD

OPTO1_B

GND

1

2

3

4

5

6

7

8

9

10

JP6

HEADER 5X2

OPTO SWITCHES

GND

RB6

OPTO1_INT

RD[0..7]

PORT-D[0..7]

PORT-B[0..7]

RB[0..7]

GND

VCC

RB7

1

2

3

4

JP13

HEADER 4

SW POWER IN

VCC

OPTO2_B

GND

2

 1

 3

U5A

1489

 4

 5

 6

U4B

1488

GND

1

2

3

4

5

6

7

8

9

10

JP4

HEADER 10

POWER OUT

Q5

IRF9Z24N

Q3

VP0300L

Q4

VP0300L

Q1

VP0300L

Q2

VP0300L

1

2

3

4

5

6

7

8

9

R4

100K

GND

RF0

RF1

RF2

RF3

RF4

RF5

RF6

RF7

I1

 1

I2

 2

I3

 3

I4

 4

I5

 5

I6

 6

I7

 7

I8

 8

O8

11

O7

12

O6

13

O5

14

O4

15

O3

16

O2

17

O1

18

C

O

M

1

0

U3

ULN2803A

Q8

IRF9Z24N

Q7

IRF9Z24N

GND

Q9

VN0300L

Q10

VN0300L

R8

100

1W

R7

100

1W

Q6

IRF9Z24N

GND

1

2

3

4

5

6

7

8

9

R3

8x10K

RELAYS[0..7]

RF[0..7]

GND

Figure 4 - Controller circuit diagram - part 2 of 3

[image: image5.wmf]Date:

September 16, 2001

Sheet

 3

of

 4

Size

Document Number

REV

B

.\NEWCTRL3

4

Title

CDG2000 CONTROLLER V2

Vsupp

VCC

1

2

3

4

5

6

7

8

9

R13

100K

VCC

PGM-VPP

PGM-CLK

PGM-IO

PGM-DCLK

R6

1k

D1

1N4148

1

2

3

4

5

6

7

8

9

10

JP10

HEADER 10

PROGRAM

GND

PGM-TEST

VCC

1

2

3

4

5

6

7

8

9

10

JP8

HEADER 5X2

KEY SWITCH 1

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

R15

1K

RH0

RH1

RH2

RH3

RH4

RH5

RH6

RH7

PORT-H[0..7]

RH[0..7]

VCC

1

2

3

4

5

6

7

8

9

R14

100K

GND

PTT

1

2

JP14

HEADER 2

PTT

GND

VCC

1

2

3

4

5

6

7

8

9

10

JP7

HEADER 5X2

KEY SWITCH 2

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

R16

1K

RJ0

RJ1

RJ2

RJ3

PORT-J[0..7]

RJ[0..7]

RJ4

RJ5

RJ6

RJ7

GND

VCC

C10

100n

VDD

C6

100n

C8

100n

1

2

3

U6

7805

C5

1u

C4

10u

Vsupp

1

2

3

JP9

HEADER 3

CTRL PWR

VEE

C7

100n

GND

VSS

C9

100n

C11

100n

Figure 5 - Controller Circuit diagram - part 3 of 3

Controller Version 8

Page 15 of 1

